Advertisements
Advertisements
प्रश्न
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
योग
उत्तर
∫ cot5 x . cosec4 x dx
= ∫ cot5 x . cosec2 x . cosec2 x dx
= ∫ cot5 x . (1 + cot2 x) . cosec2 x dx
Let cot x = t
⇒ – cosec2 x dx = dt
⇒ cosec2 x dx = –dt
Now, ∫ cot5 x . cosec4 x dx
= ∫ t5 (1 + t2) dt
= ∫(t5 + t7) dt
\[= - \left[ \frac{t^6}{6} + \frac{t^8}{8} \right] + C\]
\[ = - \left[ \frac{\cot^6 x}{6} + \frac{\cot^8 x}{8} \right] + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int \cos^2 \text{nx dx}\]
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]