हिंदी

∫ Log ( X + 2 ) ( X + 2 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\frac{\text{log }\left( x + 2 \right) dx}{\left( x + 2 \right)^2}\]
\[\text{ Let log }\left( x + 2 \right) = t\]
\[ \Rightarrow x + 2 = e^t \]
\[ \Rightarrow \frac{1}{\left( x + 2 \right)}dx = dt\]
\[ \therefore I = \int\frac{t}{e^t}dt\]
\[ = \int t e^{- t} dt\]
`  " Taking t as the first function and e"^- t" as the second function " . `
\[ = t\int e^{- t} - \int\left\{ \frac{d}{dt}\left( t \right)\int e^{- 2t} dt \right\}dt\]
\[ = t \times \frac{e^{- t}}{- 1} - \int1 \cdot e^{- t} dt\]
\[ =\text{  - t e}^{- t} + \frac{e^{- t}}{- 1} + C\]
\[ = - e^{- t} \left( t + 1 \right) + C\]
\[ = - \frac{\left( t + 1 \right)}{e^t} + C . . . (1)\]
\[\text{Substituting the value of t in eq} (1) \]
\[ = \frac{- \left[ \text{ log} \left( x + 2 \right) + 1 \right]}{x + 2} + C\]
\[ = - \frac{\text{ log } \left( x + 2 \right)}{x + 2} - \frac{1}{\left( x + 2 \right)} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 23 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int {cosec}^3 x\ dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×