हिंदी

∫ E X ( 1 − Sin X 1 − Cos X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

विकल्प

  • \[- e^x \tan\frac{x}{2} + C\]
  • \[- e^x \cot\frac{x}{2} + C\]
  • \[- \frac{1}{2} e^x \tan\frac{x}{2} + C\]
  • \[- \frac{1}{2} e^x \cot\frac{x}{2} + C\]
MCQ

उत्तर

\[- e^x \cot\frac{x}{2} + C\]
 
 
\[\text{Let }I = \int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{1 - \cos x} - \frac{\sin x}{1 - \cos x} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{2 \sin^2 \frac{x}{2}} - \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{2} {cosec}^2 \frac{x}{2} - \cot \frac{x}{2} \right)dx\]
\[\text{As, we know that }\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx = e^x f\left( x \right) + C\]
\[ \therefore I = - e^x \cot \left( \frac{x}{2} \right) + C\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 20 | पृष्ठ २०१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×