हिंदी

∫ ( X + 2 ) √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]
योग

उत्तर

\[\text{ Let I }= \int \left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\text{ Also,} x + 2 = \lambda\frac{d}{\text{  dx }} \left( x^2 + x + 1 \right) + \mu\]

\[ \Rightarrow x + 2 = \lambda\left( 2x + 1 \right) + \mu\]

\[ \Rightarrow x + 2 = \left( 2\lambda \right)x + \lambda + \mu\]

\[\text{Equating coefficient of like terms}\]

\[2\lambda = 1 \]

\[ \Rightarrow \lambda = \frac{1}{2}\]

\[\text{ And }\lambda + \mu = 2\]

\[ \Rightarrow \frac{1}{2} + \mu = 2\]

\[ \Rightarrow \mu = \frac{3}{2}\]

\[ \therefore I = \int \left[ \left( \frac{1}{2}\left( 2x + 1 \right) + \frac{3}{2} \right)\sqrt{x^2 + x + 1} \right]\text{  dx }\]

\[ = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{3}{2}\int\sqrt{x^2 + x + 1} \text{  dx }\]

\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x + 1}\text{  dx }+ \frac{3}{2}\int\sqrt{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\text{  dx }\]

\[ = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{3}{2} \int\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \text{  dx }\]

\[\text{ Let  x}^2 + x + 1 = t\]

\[ \Rightarrow \left( 2x + 1 \right)\text{  dx }= dt\]

\[\text{ Then, }\]

\[I = \frac{1}{2}\int \sqrt{t}\text{  dt } + \frac{3}{2} \int\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \text{  dx }\]

\[ = \frac{1}{2}\int t^\frac{1}{2} \text{  dt } + \frac{3}{2} \left[ \frac{x + \frac{1}{2}}{2} \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} + \frac{3}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| \right] + C\]

\[ = \frac{1}{2}\left[ \frac{t\frac{3}{2}}{\frac{3}{2}} \right] + \frac{3}{8}\left( 2x + 1 \right) \sqrt{x^2 + x + 1} + \frac{9}{16}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| + C\]

\[ = \frac{1}{3} \left( x^2 + x + 1 \right)^\frac{3}{2} + \frac{3}{8} \left( 2x + 1 \right) \sqrt{x^2 + x + 1} + \frac{9}{16}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 4 | पृष्ठ १५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫  sec^6   x  tan    x   dx `

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int x \sec^2 2x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×