हिंदी

∫ X 2 + X + 5 3 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
योग

उत्तर

\[\int\frac{\left( x^2 + x + 5 \right)}{\left( 3x + 2 \right)}dx\]
\[ = \frac{1}{9}\int\frac{9 x^2 + 9x + 45}{\left( 3x + 2 \right)}dx\]
\[ = \frac{1}{9}\left[ \int\frac{9 x^2 - 4}{3x + 2}dx + \int\frac{9x + 6}{3x + 2}dx + \int\frac{43}{3x + 2}dx \right]\]
\[ = \frac{1}{9}\left[ \int\frac{\left( 3x - 2 \right)\left( 3x + 2 \right)}{\left( 3x + 2 \right)}dx + \int\frac{3\left( 3x + 2 \right)}{3x + 2}dx + 43\int\frac{dx}{3x + 2} \right]\]
\[ = \frac{1}{9}\left[ \int\left( 3x - 2 \right) dx + 3\int1dx + 43\int\frac{dx}{3x + 2} \right]\]
\[ = \frac{1}{9}\left[ \left( 3\frac{x^2}{2} - 2x \right) + 3x + \frac{43}{3} \text{ln}\left| 3x + 2 \right| + C \right]\]
\[ = \frac{1}{9}\left[ \frac{3}{2} x^2 + x - \frac{43}{3} \text{ln }\left| 3x + 2 \right| + C \right]\]
\[ = \frac{1}{6} x^2 + \frac{1}{9}x - \frac{43}{27} \text{ln }\left| 3x + 2 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.04 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.04 | Q 3 | पृष्ठ ३०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \tan^3 x\ dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×