हिंदी

∫ 1 a + b tan x dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{a + b \tan x} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int\frac{1}{a + b \tan x}dx\]

\[ = \int\frac{1}{a + b \frac{\sin x}{\cos x}}dx\]

\[ = \int\frac{\cos x \cdot}{a \cos x + b \sin x}dx\]

\[\text{ Let } \cos x = \text{ A }\frac{d}{dx} \left( a \cos x + b \sin x \right) + \text{ B }\left( a \cos x + b \sin x \right)\]

\[ \Rightarrow \cos x = A \left( - a \sin x + b \cos x \right) + B \left( a \cos x + b \sin x \right)\]

\[1 \cdot \cos x = \left( Ab + B \cdot a \right) \cos x + \sin x\left( - A \cdot a + B \cdot b \right)\]

\[\text{Equating coefficients of like terms}\]

\[ A \cdot b + B \cdot a = 1 . . . \left( 1 \right)\]

\[ - A \cdot a + B \cdot b = 0 . . . \left( 2 \right)\]

\[\text{Multiplying equation} \left( 1 \right) \text{by a and eq} \left( 2 \right) \text{by b and then adding them} \]

\[ A \cdot ab + B \cdot a^2 = a\]

\[ - A \cdot a \cdot b + B b^2 = 0\]

\[ \Rightarrow B = \frac{a}{a^2 + b^2}\]

\[\text{Substituting the value of B in eq} \left( 1 \right)\]

\[ \Rightarrow A \cdot b + \frac{a^2}{a^2 + b^2} = 1\]

\[ \Rightarrow A \cdot b = 1 - \frac{a^2}{a^2 + b^2}\]

\[ \Rightarrow A = \frac{b}{a^2 + b^2}\]

\[ \therefore I = \frac{b}{a^2 + b^2}\int\left( \frac{- a \sin x + b \cos x}{a \cos x + b \sin x} \right)dx + \frac{a}{a^2 + b^2}\int\left( \frac{a \cos x + b \sin x}{a \cos x + b \sin x} \right)dx\]

\[ = \frac{b}{a^2 + b^2}\int\left( \frac{- a \sin x + b \cos x}{a \cos x + b \sin x} \right)dx + \frac{a}{a^2 + b^2}\int dx\]

\[\text{ Putting  a   cos x + b sin x = t in  the Ist  integral}\]

\[ \Rightarrow \left( - a \sin x + b \cos x \right)dx = dt\]

\[ \therefore I = \frac{b}{a^2 + b^2}\int\frac{dt}{t} + \frac{a}{a^2 + b^2}\int dx\]

\[ = \frac{b}{a^2 + b^2} \text{ ln }\left| t \right| + \frac{ax}{a^2 + b^2} + C\]

\[ = \frac{b}{a^2 + b^2} \text{ ln} \left| a \cos x + b \sin x \right| + \frac{ax}{a^2 + b^2} + C................ \left[ \because t = a \cos x + b \sin x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 58 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \cot^5 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×