Advertisements
Advertisements
प्रश्न
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
योग
उत्तर
\[\text{Let I} = \int\frac{1 - \sin x}{x + \cos x}dx\]
\[\text{Putting x} + \cos x = t\]
\[ \Rightarrow 1 - \sin x = \frac{dt}{dx}\]
\[ \Rightarrow \left( 1 - \sin x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln t} + C\]
\[ = \text{ln }\left| x + \cos x \right| + C \left[ \because t = x + \cos x \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\frac{1}{1 - \cos 2x} dx\]
` ∫ cos 3x cos 4x` dx
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int \cos^5 x \text{ dx }\]
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int x^3 \text{ log x dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]