हिंदी

∫ 1 Sin 2 X + Sin 2 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
योग

उत्तर

\[\text{ Let  I } = \int\frac{1}{\sin^2 x + \sin 2x}dx\]

\[ = \int\frac{1}{\sin^2 x + 2 \sin x \cdot \cos x}dx\]

Dividing numerator and denominator by cos2x, we get

\[I = \int\frac{\frac{1}{\cos^2 x}}{\tan^2 x + 2 \tan x}dx\]
\[ = \int\frac{\sec^2 x}{\tan^2 x + 2 \tan x} dx\]
\[\text{ Putting  tan  x = t}\]
\[ \Rightarrow \text{ sec}^2  \text{ x  dx = dt }\]
\[ \therefore I = \int\frac{1}{t^2 + 2t}dt\]
\[ = \int\frac{1}{t^2 + 2t + 1 - 1}dt\]
\[ = \int\frac{1}{\left( t + 1 \right)^2 - 1^2}dt\]
\[ = \frac{1}{2} \text{ ln} \left| \frac{t + 1 - 1}{t + 1 + 1} \right| + C\]
\[ = \frac{1}{2} \text{ ln } \left| \frac{t}{t + 2} \right| + C \]
\[ = \frac{1}{2} \text{ ln} \left| \frac{\tan x}{\tan x + 2} \right| + C ............\left[ \because t = \tan x \right]\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 59 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int x^3 \cos x^4 dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×