Advertisements
Advertisements
प्रश्न
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
विकल्प
- \[\sqrt{\sin 2x} + C\]
- \[\sqrt{\cos 2x} + C\]
± (sin x − cos x) + C
± log (sin x − cos x) + C
उत्तर
± log (sin x − cos x) + C
\[\text{Let }I = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{1 - \sin 2x}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\sin^2 x + \cos^2 x - 2 \sin x \cos x}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\left( \sin x - \cos x \right)^2}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\left| \sin x - \cos x \right|}\]
\[ = \pm \int\left( \frac{\sin x + \cos x}{\sin x - \cos x} \right)dx\]
\[\text{Let }\sin x - \cos x = t\]
\[ \Rightarrow \left( \cos x + \sin x \right)dx = dt\]
\[ \therefore I = \pm \int\frac{dt}{t}\]
\[ = \pm \ln \left| t \right| + C\]
\[ = \pm \ln \left| \sin x - \cos x \right| + C .............\left( \because t = \sin x - \cos x \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
`∫ cos ^4 2x dx `
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]