हिंदी

The Value of ∫ Sin X + Cos X √ 1 − Sin 2 X D X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to

विकल्प

  • \[\sqrt{\sin 2x} + C\]
  • \[\sqrt{\cos 2x} + C\]
  •  ± (sin x − cos x) + C

  •  ± log (sin x − cos x) + C

MCQ

उत्तर

± log (sin x − cos x) + C

 

\[\text{Let }I = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{1 - \sin 2x}}\]

\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\sin^2 x + \cos^2 x - 2 \sin x \cos x}}\]

\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\left( \sin x - \cos x \right)^2}}\]

\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\left| \sin x - \cos x \right|}\]

\[ = \pm \int\left( \frac{\sin x + \cos x}{\sin x - \cos x} \right)dx\]

\[\text{Let }\sin x - \cos x = t\]

\[ \Rightarrow \left( \cos x + \sin x \right)dx = dt\]

\[ \therefore I = \pm \int\frac{dt}{t}\]

\[ = \pm \ln \left| t \right| + C\]

\[ = \pm \ln \left| \sin x - \cos x \right| + C .............\left( \because t = \sin x - \cos x \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 28 | पृष्ठ २०२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


`∫     cos ^4  2x   dx `


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x e^x \text{ dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×