हिंदी

∫ X 2 + 5 X + 2 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]

योग

उत्तर

\[\int\frac{\left( x^2 + 5x + 2 \right)}{\left( x + 2 \right)}dx\]
`=  ∫ x^2 / {x+2}  dx  + 5 ∫   {x   dx} / {x+2 } + 2 ∫  dx/{ x+2}`
\[ = \int\left( \frac{x^2 - 4 + 4}{x + 2} \right)dx + 5\int\left( \frac{x + 2 - 2}{x + 2} \right)dx + 2\int\frac{dx}{x + 2}\]
\[ = \int\frac{\left( x - 2 \right)\left( x + 2 \right)}{\left( x + 2 \right)}dx + \int\frac{4}{x + 2}dx + 5\int\left( 1 - \frac{2}{x + 2} \right)dx + 2\int\frac{dx}{x + 2}\]
\[ = \int\left( x - 2 \right) dx + 4\int\frac{dx}{x + 2} + 5\  ∫ dx - 10\int\frac{dx}{x + 2} + 2\int\frac{dx}{x + 2}\]
\[ = \int\left( x - 2 \right)dx - 4\int\frac{dx}{x + 2} + 5\  ∫  dx\]
\[ = \left( \frac{x^2}{2} - 2x \right) -\text{ 4  ln }\left| x + 2 \right| + 5x + C\]
\[ = \frac{x^2}{2} + 3x - \text{4  ln} \left| x + 2 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.04 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.04 | Q 1 | पृष्ठ ३०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \cos^2 \text{nx dx}\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

 
` ∫  x tan ^2 x dx 

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×