हिंदी

∫ Cos 3 ( 3 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cos^3 (3x)\ dx\]
योग

उत्तर

\[\int \cos^3 \left( 3x \right) \text{ dx} \]
` \text{ As  we  know  that  cos 3A = 4  cos^{3} A - 3 cos A } `
\[ \Rightarrow \frac{\cos 3A + 3 \cos A}{4} = \cos^3 A\]
\[ \Rightarrow \int\left[ \frac{\cos \text{ 9x }+ 3 \cos 3x}{4} \right]dx\]
\[ \Rightarrow \frac{1}{4}\int\text{ cos  9x  dx} + \frac{3}{4}\int\text{ cos  3x  dx}\]
\[ \Rightarrow \frac{1}{4} \left[ \frac{\sin \text{ 9x}}{9} \right] + \frac{3}{4}\left[ \frac{\sin 3x}{3} \right] + C\]
\[ \Rightarrow \frac{\sin 9x}{36} + \frac{\sin 3x}{4} + C\]
\[ \Rightarrow \frac{1}{36}\left[ 3 \sin 3x - 4 \sin^{ 3} 3x \right] + \frac{\sin 3x}{4} + C................................. \left( \because \sin 3x = 3 \sin x - 4 \sin^3 x \right)\]
\[ \Rightarrow \frac{\sin 3x}{12} + \frac{\sin 3x}{4} - \frac{1}{9} \sin^3 3x + C\]
\[ \Rightarrow \frac{\sin 3x}{3} - \frac{\sin^3 3x}{9} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 12 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

` ∫   tan   x   sec^4  x   dx  `


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×