Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \cos^3 \left( 3x \right) \text{ dx} \]
` \text{ As we know that cos 3A = 4 cos^{3} A - 3 cos A } `
\[ \Rightarrow \frac{\cos 3A + 3 \cos A}{4} = \cos^3 A\]
\[ \Rightarrow \int\left[ \frac{\cos \text{ 9x }+ 3 \cos 3x}{4} \right]dx\]
\[ \Rightarrow \frac{1}{4}\int\text{ cos 9x dx} + \frac{3}{4}\int\text{ cos 3x dx}\]
\[ \Rightarrow \frac{1}{4} \left[ \frac{\sin \text{ 9x}}{9} \right] + \frac{3}{4}\left[ \frac{\sin 3x}{3} \right] + C\]
\[ \Rightarrow \frac{\sin 9x}{36} + \frac{\sin 3x}{4} + C\]
\[ \Rightarrow \frac{1}{36}\left[ 3 \sin 3x - 4 \sin^{ 3} 3x \right] + \frac{\sin 3x}{4} + C................................. \left( \because \sin 3x = 3 \sin x - 4 \sin^3 x \right)\]
\[ \Rightarrow \frac{\sin 3x}{12} + \frac{\sin 3x}{4} - \frac{1}{9} \sin^3 3x + C\]
\[ \Rightarrow \frac{\sin 3x}{3} - \frac{\sin^3 3x}{9} + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following integrals:
` ∫ tan x sec^4 x dx `
` ∫ \sqrt{tan x} sec^4 x dx `
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]