English

∫ Cos 3 ( 3 X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int \cos^3 (3x)\ dx\]
Sum

Solution

\[\int \cos^3 \left( 3x \right) \text{ dx} \]
` \text{ As  we  know  that  cos 3A = 4  cos^{3} A - 3 cos A } `
\[ \Rightarrow \frac{\cos 3A + 3 \cos A}{4} = \cos^3 A\]
\[ \Rightarrow \int\left[ \frac{\cos \text{ 9x }+ 3 \cos 3x}{4} \right]dx\]
\[ \Rightarrow \frac{1}{4}\int\text{ cos  9x  dx} + \frac{3}{4}\int\text{ cos  3x  dx}\]
\[ \Rightarrow \frac{1}{4} \left[ \frac{\sin \text{ 9x}}{9} \right] + \frac{3}{4}\left[ \frac{\sin 3x}{3} \right] + C\]
\[ \Rightarrow \frac{\sin 9x}{36} + \frac{\sin 3x}{4} + C\]
\[ \Rightarrow \frac{1}{36}\left[ 3 \sin 3x - 4 \sin^{ 3} 3x \right] + \frac{\sin 3x}{4} + C................................. \left( \because \sin 3x = 3 \sin x - 4 \sin^3 x \right)\]
\[ \Rightarrow \frac{\sin 3x}{12} + \frac{\sin 3x}{4} - \frac{1}{9} \sin^3 3x + C\]
\[ \Rightarrow \frac{\sin 3x}{3} - \frac{\sin^3 3x}{9} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 12 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫      tan^5    x   dx `


\[\int \cot^6 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×