English

If F' (X) = X + B, F(1) = 5, F(2) = 13, Find F(X) - Mathematics

Advertisements
Advertisements

Question

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)

Sum

Solution

\[f'\left( x \right) = x + b, f\left( 1 \right) = 5, f\left( 2 \right) = 13\]
\[ f'\left( x \right) = x + b\]
\[\int{f}'\left( x \right)dx = \int\left( x + b \right)dx\]
\[f\left( x \right) = \frac{x^2}{2} + bx + C . . . . (i)\]
\[f\left( 1 \right) = 5, f\left( 2 \right) = 13 \left( Given \right)\]
\[\text{Puting x} = \text{1  in (i)}\]
\[f\left( 1 \right) = \frac{1^2}{2} + b1 + C\]
\[5 = \frac{1}{2} + b + C . . . \left( ii \right)\]
\[\text{Puting x }= \text{2 in (i)}\]
\[f\left( 2 \right) = \frac{2^2}{2} + b2 + C\]
\[13 = \frac{4}{2} + 2b + C\]
\[13 = 2 + 2b + C . . . (iii)\]
\[\text{Solving (ii) and (iii) we get}, \]
\[b = \frac{13}{2} \text{and C }= - 2\]
\[Thus, f\left( x \right) = \frac{x^2}{2} + \frac{13}{2}x - 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.02 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.02 | Q 46 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


`int 1/(sin x - sqrt3 cos x) dx`

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×