English

∫ X 2 Tan − 1 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x^2 \tan^{- 1} x\ dx\]
Sum

Solution

\[\text{We have}, \]
\[I = \int x^2 \tan^{- 1} x \text{ dx }\]
\[\text{Considering} \tan^{- 1}  \text{  x   as first function and  x}^2 \text{as second function}\]
\[I = \tan^{- 1} x\frac{x^3}{3} - \int\left( \frac{1}{1 + x^2} \times \frac{x^3}{3} \right)dx\]
\[ = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{3}\int\frac{x^3 dx}{1 + x^2}\]
\[ = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{3}\int\left( \frac{x^2 x}{1 + x^2} \right)dx\]
\[\text{ Putting 1 + x}^2 = t\]
\[ \Rightarrow x^2 = t - 1\]
\[ \Rightarrow \text{ 2x dx = dt}\]
\[ \Rightarrow x\text{  dx }= \frac{dt}{2}\]
\[ \therefore I = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{6}\int\left( \frac{t - 1}{t} \right)dt\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}\int dt + \frac{1}{6}\int\frac{dt}{t}\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}t + \frac{1}{6}\text{ log }\left| t \right| + C\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}\left( 1 + x^2 \right) + \frac{1}{6}\text{ log }\left| 1 + x^2 \right| + C\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{x^2}{6} + \frac{1}{6}\text{ log} \left| x^2 + 1 \right| + C'\text{  Where C' = C }- \frac{1}{6}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 108 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int \cos^2 \text{nx dx}\]

` ∫   cos  3x   cos  4x` dx  

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫      tan^5    x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×