English

∫ X 2 Sin − 1 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x^2 \sin^{- 1} x\ dx\]
Sum

Solution

\[\int {x^2}_{II} . \sin^{- 1}_I x \text{ dx }\]
\[ = \sin^{- 1}_{} x\int x^2 dx - \int\left\{ \frac{d}{dx}\left( \sin^{- 1}_{} x \right)\int x^2 dx \right\}dx\]
\[ = \sin^{- 1} x . \frac{x^3}{3} - \int\frac{1}{\sqrt{1 - x^2}} \frac{x^3}{3}dx\]
\[\text{  Let 1} - x^2 = t\]
\[ \Rightarrow x^2 = 1 - t\]
\[ \Rightarrow -\text{  2x dx } = dt\]
\[ \Rightarrow\text{  x dx } = - \frac{dt}{2}\]


\[ \therefore \int {x^2}_{} . \sin^{- 1}_{} \text{ x dx } = \sin^{- 1} x . \frac{x^3}{3} - \frac{1}{3}\int \frac{x^2 . x}{\sqrt{1 - x^2}}dx\]


\[ = \sin^{- 1} x . \frac{x^3}{3} - \frac{1}{6}\int \frac{\left( 1 - t \right)}{\sqrt{t}}dt\]
\[ = \sin^{- 1} x . \frac{x^3}{3} + \frac{1}{6}\int t^{- \frac{1}{2}} dt - \frac{1}{6}\int t^\frac{1}{2} dt\]
\[ = \sin^{- 1} x . \frac{x^3}{3} + \frac{1}{6} \times 2\sqrt{t} - \frac{1}{6} \times \frac{2}{3} t^\frac{3}{2} + C\]
\[ = \sin^{- 1} x . \frac{x^3}{3} + \frac{\sqrt{1 - x^2}}{3} - \frac{1}{9} \left( 1 - x^2 \right)^\frac{3}{2} + C \left( \because 1 - x^2 = t \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 38 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×