English

∫ √ 1 − Sin X 1 + Cos X E − X / 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]
Sum

Solution

Let I=\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} dx\]

\[ = \int\left( \frac{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}}}{2 \cos^2 \frac{x}{2}} \right) e^\frac{- x}{2} dx\]

\[ = \int\frac{\sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}{2 \cos^2 \frac{x}{2}} e^\frac{- x}{2} dx\]

\[ = \int\left( \frac{\sin\frac{x}{2} - \cos\frac{x}{2}}{2 \cos^2 \frac{x}{2}} \right) e^\frac{- x}{2} dx\]

\[ = \int\left[ \frac{1}{2}\sec\frac{x}{2}\tan\frac{x}{2} - \frac{1}{2}\sec\left( \frac{x}{2} \right) \right] e^\frac{- x}{2} dx\]

\[ = \frac{1}{2}\int\left( \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right) e^\frac{- x}{2} dx\]

\[\text{ let e}^\frac{- x}{2} \text{ sec }\left( \frac{x}{2} \right) = t\]

\[\text{ Diff  both  sides w . r . t x}\]

\[ e^\frac{- x}{2} \frac{\sec\left( \frac{x}{2} \right)\tan\left( \frac{\mathit{x}}{2} \right)}{2} + \sec\left( \frac{x}{2} \right) \times e^\frac{- x}{2} \times \frac{- 1}{2} = \frac{dt}{dx}\]

\[ \Rightarrow \frac{e}{2}^\frac{- x}{2} \left[ \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right]dx = dt\]

\[ \therefore \frac{1}{2}\int\left( \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right) e^\frac{- x}{2} dx = \int dt\]

\[ \Rightarrow I = \int t + C\]

\[ = e^\frac{- x}{2} \sec\left( \frac{x}{2} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.26 [Page 143]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.26 | Q 14 | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int \sin^2\text{ b x dx}\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \cot^4 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×