Advertisements
Advertisements
Question
Solution
Let I=\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} dx\]
\[ = \int\left( \frac{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}}}{2 \cos^2 \frac{x}{2}} \right) e^\frac{- x}{2} dx\]
\[ = \int\frac{\sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}{2 \cos^2 \frac{x}{2}} e^\frac{- x}{2} dx\]
\[ = \int\left( \frac{\sin\frac{x}{2} - \cos\frac{x}{2}}{2 \cos^2 \frac{x}{2}} \right) e^\frac{- x}{2} dx\]
\[ = \int\left[ \frac{1}{2}\sec\frac{x}{2}\tan\frac{x}{2} - \frac{1}{2}\sec\left( \frac{x}{2} \right) \right] e^\frac{- x}{2} dx\]
\[ = \frac{1}{2}\int\left( \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right) e^\frac{- x}{2} dx\]
\[\text{ let e}^\frac{- x}{2} \text{ sec }\left( \frac{x}{2} \right) = t\]
\[\text{ Diff both sides w . r . t x}\]
\[ e^\frac{- x}{2} \frac{\sec\left( \frac{x}{2} \right)\tan\left( \frac{\mathit{x}}{2} \right)}{2} + \sec\left( \frac{x}{2} \right) \times e^\frac{- x}{2} \times \frac{- 1}{2} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{e}{2}^\frac{- x}{2} \left[ \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right]dx = dt\]
\[ \therefore \frac{1}{2}\int\left( \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right) e^\frac{- x}{2} dx = \int dt\]
\[ \Rightarrow I = \int t + C\]
\[ = e^\frac{- x}{2} \sec\left( \frac{x}{2} \right) + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]