English

∫ Sin ( X − α ) Sin ( X + α ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
Sum

Solution

\[\text{Let I }= \int\frac{\sin\left( x - \alpha \right)}{\sin\left( x + \alpha \right)}dx\]

\[\text{Putting x} + \alpha = t \]

\[ \Rightarrow x = t - \alpha\]

\[\text{and}\ dx = dt\]

\[ \therefore I = \int\frac{\sin \left( t - 2\alpha \right)}{\sin t}dt\]

\[ = \int\left( \frac{\sin t \cos 2\alpha}{\sin t} - \frac{\cos t \sin 2\alpha}{\sin t} \right)dt\]

\[ = \cos 2\alpha\  ∫ dt - \sin 2\alpha\int\text{cot t dt}\]

\[ = t\cos 2\alpha - \text{sin 2}\alpha \text{ln }\left| \sin t \right| + C\]

\[ = \left( x + \alpha \right)\text{cos 2}\alpha - \text{sin 2}\alpha \text{ln }\left| \sin \left( x + \alpha \right) \right| + C \left[ \because t = x + \alpha \right]\]

\[ = x\cos 2\alpha - \text{sin 2}\alpha \text{ln }\left| \sin \left( x + \alpha \right) \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 8 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int \cot^5 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×