Advertisements
Advertisements
Question
Solution
\[\text{Let I }= \int\frac{\sin\left( x - \alpha \right)}{\sin\left( x + \alpha \right)}dx\]
\[\text{Putting x} + \alpha = t \]
\[ \Rightarrow x = t - \alpha\]
\[\text{and}\ dx = dt\]
\[ \therefore I = \int\frac{\sin \left( t - 2\alpha \right)}{\sin t}dt\]
\[ = \int\left( \frac{\sin t \cos 2\alpha}{\sin t} - \frac{\cos t \sin 2\alpha}{\sin t} \right)dt\]
\[ = \cos 2\alpha\ ∫ dt - \sin 2\alpha\int\text{cot t dt}\]
\[ = t\cos 2\alpha - \text{sin 2}\alpha \text{ln }\left| \sin t \right| + C\]
\[ = \left( x + \alpha \right)\text{cos 2}\alpha - \text{sin 2}\alpha \text{ln }\left| \sin \left( x + \alpha \right) \right| + C \left[ \because t = x + \alpha \right]\]
\[ = x\cos 2\alpha - \text{sin 2}\alpha \text{ln }\left| \sin \left( x + \alpha \right) \right| + C\]
APPEARS IN
RELATED QUESTIONS
` = ∫1/{sin^3 x cos^ 2x} dx`
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`