English

∫ 1 Sin 3 X Cos X D X - Mathematics

Advertisements
Advertisements

Question

` = ∫1/{sin^3 x cos^ 2x} dx`

Sum

Solution

\[\int\frac{dx}{\sin^3 x . \cos x}\]
` "Dividing numerator and denominator by"  sin^4 x`

\[ = \int\frac{\frac{1}{\sin^4 x}dx}{\frac{\sin^3 x . \cos x}{\sin^4 x}}\]

\[ = \int\frac{{cosec}^4 x dx}{\cot x}\]

\[ = \int\frac{{cosec}^2 x . {cosec}^2 x dx}{\cot x}\]
`= {( 1 + cot^2 x ) . "cosec"^2  x    dx}/cot x`

\[Let \cot x = t\]

` ⇒ "-cosec"^2  x   =  dt / dx  `

` ⇒ "cosec"^2  x  dx = - dt  `
\[Now, \int\frac{\left( 1 + \cot^2 x \right) . {cosec}^2 x}{\cot x}dx\]

\[ = \int\frac{\left( 1 + t^2 \right) . \left( - dt \right)}{t}\]

\[ = - \int\left( \frac{1}{t} + t \right)dt\]

\[ = - \log \left| t \right| - \frac{t^2}{2} + C\]

\[ = - \log \left| \cot x \right| - \frac{\cot^2 x}{2} + C\]

\[ = \log \left| \cot x \right|^{- 1} - \frac{\left( {cosec}^2 x - 1 \right)}{2} + C\]

\[ = \log \left| \frac{1}{\cot x} \right| - \frac{{cosec}^2 x}{2} + \frac{1}{2} + C\]

\[ = \log \left| \tan x \right| - \frac{1}{2 \sin^2 x} + C' \left[ \therefore C' = C + \frac{1}{2} \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.12 [Page 73]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.12 | Q 12 | Page 73

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

` ∫   cos  3x   cos  4x` dx  

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×