English

If ∫ Cos 8 X + 1 Tan 2 X − Cot 2 X D X (A) − 1 16 (B) 1 8 (C) 1 16 (D) − 1 8 - Mathematics

Advertisements
Advertisements

Question

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]

Options

  • \[- \frac{1}{16}\]

  • \[\frac{1}{8}\]

  • \[\frac{1}{16}\]

  • \[- \frac{1}{8}\]

MCQ

Solution

\[\frac{1}{16}\]

 

\[\text{If }\int\left( \frac{\cos 8x + 1}{\tan 2x - \cot 2x} \right)dx = a \cos 8x + C ............(1) \]
\[\text{Considering the LHS of eq. } (1)\]
\[\int\left( \frac{\cos 8x + 1}{\tan 2x - \cot 2x} \right)dx\]
\[ \Rightarrow \int\left( \frac{2 \cos^2 4x}{\frac{\sin 2x}{\cos 2x} - \frac{\cos 2x}{\sin 2x}} \right)dx\]
\[ \Rightarrow \int\frac{2 \cos^2 4x}{\left( \sin^2 2x - \cos^2 2x \right)} \times \sin 2x \cos 2x\]
\[ \Rightarrow \int\left[ \frac{- \cos^2 4x \times 2 \sin 2x \cdot \cos 2x}{\cos^2 2x - \sin^2 2x} \right]dx\]
\[ \Rightarrow \int\frac{- \cos^2 4x \times \sin 4x}{\cos 4x}dx ................\left( \because \cos 2x = \cos^2 x - \sin^2 x \right)\]
\[ \Rightarrow \frac{1}{2}\int - 2 \sin 4x \cos 4x dx \]
\[ \Rightarrow \frac{- 1}{2}\int\sin 8x dx\]
\[ \Rightarrow - \frac{1}{2}\left[ \frac{- \cos 8x}{8} \right] + C\]
\[ = \frac{1}{16}\left[ \cos 8x \right] + C ...............(2) \]
\[\text{Comparing RHS of eq. (1) with the eq. } (2)\]
\[ \therefore a = \frac{1}{16}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 200]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 7 | Page 200

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫      tan^5    x   dx `


\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×