Advertisements
Advertisements
Question
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
Options
xsin x + C
xsin x cos x + C
\[\frac{\left( x^{\sin x} \right)^2}{2} + C\]
none of these
MCQ
Solution
xsin x + C
\[\text{ Let I } = \int x^{\sin x} \left( \frac{\sin x}{x} + \cos x \cdot \log x \right)dx\]
\[\text{ Putting x}^{\sin x} = t\]
\[ \Rightarrow \ln \left( x \right)^{\sin x} = \ln t\]
\[ \Rightarrow \sin x \cdot \ln x = \ln t\]
\[ \Rightarrow \left( \sin x \times \frac{1}{x} + \cos x \ln x \right)dx = \frac{1}{t}dt\]
\[ \therefore I = \int t \cdot \frac{dt}{t}\]
\[ = t + C\]
\[ = x^{\sin x} + C .............\left( \because t = x^{\sin x} \right)\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( 3x + 4 \right)^2 dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
`∫ cos ^4 2x dx `
\[\int \sin^2 \frac{x}{2} dx\]
\[\int \cos^2 \text{nx dx}\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]