English

∫ X Sin X ( Sin X X + Cos X . Log X ) D X I S E Q U a L T O (A) Xsin X + C (B) Xsin X Cos X + C (C) ( X Sin X ) 2 2 + C (D) None of These - Mathematics

Advertisements
Advertisements

Question

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

Options

  •  xsin x + C

  •  xsin x cos x + C

  • \[\frac{\left( x^{\sin x} \right)^2}{2} + C\]

  • none of these

MCQ

Solution

 xsin x + 

\[\text{ Let I } = \int x^{\sin x} \left( \frac{\sin x}{x} + \cos x \cdot \log x \right)dx\]
\[\text{ Putting  x}^{\sin x} = t\]
\[ \Rightarrow \ln \left( x \right)^{\sin x} = \ln t\]
\[ \Rightarrow \sin x \cdot \ln x = \ln t\]
\[ \Rightarrow \left( \sin x \times \frac{1}{x} + \cos x \ln x \right)dx = \frac{1}{t}dt\]
\[ \therefore I = \int t \cdot \frac{dt}{t}\]
\[ = t + C\]
\[ = x^{\sin x} + C .............\left( \because t = x^{\sin x} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 200]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 5 | Page 200

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( 3x + 4 \right)^2 dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

`∫     cos ^4  2x   dx `


\[\int \sin^2 \frac{x}{2} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×