English

∫ 1 Sin X Cos 3 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sin x \cos^3 x} dx\]
Sum

Solution

\[\int\frac{dx}{\sin x . \cos^3 x}\]

` "Dividing  numerator  and  denominaor by " cos^4 x `
\[ = \int\frac{\frac{1}{\cos^4 x} dx}{\frac{\sin x . \cos^3 x}{\cos^4 x}}\]
`  ∫   { . sec^4 x   dx}/{tan x}`
`  ∫   {sec^2 x . sec^2 x   dx}/{tan x}`
\[ = \int\frac{\left( 1 + \tan^2 x \right) . \sec^2 x}{\tan x}dx\]
\[Let \tan x = t\]
` ⇒  sec^2  x   = dx / dt`
` ⇒  sec^2  x  dx = dt `
\[Now, \int\frac{\left( 1 + \tan^2 x \right) . \sec^2 x}{\tan x}dx \]
\[ = \int\frac{\left( 1 + t^2 \right)}{t}dt\]
\[ = \int\left( \frac{1}{t} + t \right)dt\]
\[ = \text{log} \left| \text{t} \right| + \frac{t^2}{2} + C\]
\[ = \text{log }\left| \tan x \right| + \frac{\tan^2 x}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.12 [Page 73]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.12 | Q 13 | Page 73

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×