Advertisements
Advertisements
Question
Solution
\[\int\frac{dx}{\sin x . \cos^3 x}\]
` "Dividing numerator and denominaor by " cos^4 x `
\[ = \int\frac{\frac{1}{\cos^4 x} dx}{\frac{\sin x . \cos^3 x}{\cos^4 x}}\]
` ∫ { . sec^4 x dx}/{tan x}`
` ∫ {sec^2 x . sec^2 x dx}/{tan x}`
\[ = \int\frac{\left( 1 + \tan^2 x \right) . \sec^2 x}{\tan x}dx\]
\[Let \tan x = t\]
` ⇒ sec^2 x = dx / dt`
` ⇒ sec^2 x dx = dt `
\[Now, \int\frac{\left( 1 + \tan^2 x \right) . \sec^2 x}{\tan x}dx \]
\[ = \int\frac{\left( 1 + t^2 \right)}{t}dt\]
\[ = \int\left( \frac{1}{t} + t \right)dt\]
\[ = \text{log} \left| \text{t} \right| + \frac{t^2}{2} + C\]
\[ = \text{log }\left| \tan x \right| + \frac{\tan^2 x}{2} + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .