English

∫ ( 2 X − 5 ) √ 2 + 3 X − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]
Sum

Solution

\[\text{ Let I }= \int \left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\text{ Also,} 2x - 5 = \lambda\frac{d}{dx}\left( 2 + 3x - x^2 \right) + \mu\]

\[ \Rightarrow 2x - 5 = \lambda\left( - 2x + 3 \right) + \mu\]

\[ \Rightarrow 2x - 5 = \left( - 2\lambda \right)x + 3\lambda + \mu\]

\[\text{Equating coeffieicents of like terms}\]

\[ - 2\lambda = 2\]

\[ \Rightarrow \lambda = - 1\]

\[\text{ And }\]

\[3\lambda + \mu = - 5\]

\[ \Rightarrow 3\left( - 1 \right) + \mu = - 5\]

\[ \Rightarrow \mu = - 5 + 3\]

\[ \Rightarrow \mu = - 2\]

\[ \therefore 2x - 5 = - 1\left( - 2x + 3 \right) - 2\]

\[\text{ Hence,} I = \int \left[ - \left( - 2x + 3 \right) - 2 \right] \sqrt{2 + 3x - x^2} \text{  dx }\]

\[ = - \int \left( - 2x + 3 \right) \sqrt{2 + 3x - x^2}dx - 2\int\sqrt{2 + 3x - x^2} \text{  dx }\]

\[ = - I_1 - 2 I_2 . . . . . \left( 1 \right)\]

\[ I_1 = \int\left( - 2x + 3 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\text{ Let } 2 + 3x - x^2 = t\]

\[ \Rightarrow \left( - 2x + 3 \right)dx = dt\]

\[ \therefore I_1 = \int t^\frac{1}{2} dt\]

\[ = \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1}\]

\[ = \frac{2}{3} t^\frac{3}{2} \]

\[ = \frac{2}{3} \left( 2 + 3x - x^2 \right)^\frac{3}{2} . . . . . \left( 2 \right)\]

\[\text{ And I}_2 = \int \sqrt{2 + 3x - x^2} \text{  dx }\]

\[ I_2 = \int \sqrt{2 - \left( x^2 - 3x \right)} \text{  dx }\]

\[ = \int \sqrt{2 - \left[ x^2 - 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 \right]} dx\]

\[ = \int\sqrt{2 + \frac{9}{4} - \left( x - \frac{3}{2} \right)^2} dx\]

\[ = \int \sqrt{\left( \frac{\sqrt{17}}{2} \right)^2 - \left( x - \frac{3}{2} \right)^2} \text{  dx }\]

\[ = \frac{x - \frac{3}{2}}{2} \sqrt{\left( \frac{\sqrt{17}}{2} \right)^2 - \left( x - \frac{3}{2} \right)^2} + \frac{\left( \frac{\sqrt{17}}{2} \right)^2}{2} \sin^{- 1} \left( \frac{x - \frac{3}{2}}{\frac{\sqrt{17}}{2}} \right)\]

\[ = \frac{2x - 3}{4}\sqrt{2 + 3x - x^2} + \frac{17}{8} \sin^{- 1} \left( \frac{2x - 3}{\sqrt{17}} \right) . . . . . \left( 3 \right)\]

\[\text{ From eq }\left( 1 \right), \left( 2 \right) \text{ and } \left( 3 \right) \text{ we have}\]

\[I = - \frac{2}{3} \left( 2 + 3x - x^2 \right)^\frac{3}{2} - \frac{\left( 2x - 3 \right)}{2}\sqrt{2 + 3x - x^2} - \frac{17}{4} \sin^{- 1} \left( \frac{2x - 3}{\sqrt{17}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 159]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 3 | Page 159

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

`∫     cos ^4  2x   dx `


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫   tan   x   sec^4  x   dx  `


\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×