Advertisements
Advertisements
Question
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
Sum
Solution
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
Rationalising the denominator
\[= \int\frac{\left( \sqrt{x + 3} + \sqrt{x + 2} \right)}{\left( \sqrt{x + 3} - \sqrt{x + 2} \right) \left( \sqrt{x + 3} + \sqrt{x + 2} \right)} dx\]
\[ = \int\left[ \frac{\left( x + 3 \right)^\frac{1}{2} + \left( x + 2 \right)^\frac{1}{2}}{\left( x + 3 \right) - \left( x + 2 \right)} \right]dx\]
\[ = \int\left[ \left( x + 3 \right)^\frac{1}{2} + \left( x + 2 \right)^\frac{1}{2} \right]dx\]
`= [ (x+3 )^{1/2+1} / {1/2+1 } + (x+2)^{1/2 + 1 } / {1/2+1}] + c`
\[ = \frac{2}{3} \left( x + 3 \right)^\frac{3}{2} + \frac{2}{3} \left( x + 2 \right)^\frac{3}{2} + C\]
\[ = \frac{2}{3}\left\{ \left( x + 3 \right)^\frac{3}{2} + \left( x + 2 \right)^\frac{3}{2} \right\} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
` ∫ tan^3 x sec^2 x dx `
` ∫ sec^6 x tan x dx `
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int \sin^4 2x\ dx\]
\[\int \cot^5 x\ dx\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]