English

∫ 1 √ X + 3 − √ X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
Sum

Solution

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

Rationalising the denominator

\[= \int\frac{\left( \sqrt{x + 3} + \sqrt{x + 2} \right)}{\left( \sqrt{x + 3} - \sqrt{x + 2} \right) \left( \sqrt{x + 3} + \sqrt{x + 2} \right)} dx\]
\[ = \int\left[ \frac{\left( x + 3 \right)^\frac{1}{2} + \left( x + 2 \right)^\frac{1}{2}}{\left( x + 3 \right) - \left( x + 2 \right)} \right]dx\]
\[ = \int\left[ \left( x + 3 \right)^\frac{1}{2} + \left( x + 2 \right)^\frac{1}{2} \right]dx\]
`= [ (x+3 )^{1/2+1} / {1/2+1 }    +   (x+2)^{1/2 + 1 } / {1/2+1}] + c`
\[ = \frac{2}{3} \left( x + 3 \right)^\frac{3}{2} + \frac{2}{3} \left( x + 2 \right)^\frac{3}{2} + C\]
\[ = \frac{2}{3}\left\{ \left( x + 3 \right)^\frac{3}{2} + \left( x + 2 \right)^\frac{3}{2} \right\} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.03 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.03 | Q 17 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int \sin^4 2x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×