English

∫ X 2 √ X − 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
Sum

Solution

\[\int\frac{x^2}{\sqrt{x - 1}}\text{  dx  }\]
\[\text{Let x}  - 1 = t^2 \]
\[ \Rightarrow x = t^2 + 1\]
\[ \Rightarrow 1 = 2t \frac{dt}{dx}\]
\[ \Rightarrow dx =  \text{ 2t dt  }\]
\[Now, \int\frac{x^2}{\sqrt{x - 1}}\text{ dx }\]
\[ = \int\frac{\left( t^2 + 1 \right)^2}{t}\text{ 2t dt }\]
\[ = 2\int\left( t^4 + 2 t^2 + 1 \right)dt\]
\[ = 2\left[ \frac{t^{4 + 1}}{4 + 1} + \frac{2 t^{2 + 1}}{2 + 1} + t \right] + C\]
\[ = 2\left[ \frac{t^5}{5} + \frac{2 t^3}{3} + t \right] + C\]
\[ = 2\left[ \frac{3 t^5 + 10 t^3 + 15t}{15} \right] + C\]
\[ = \frac{2}{15}t\left[ 3 t^4 + 10 t^2 + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1} \left[ 3 \left( x - 1 \right)^2 + 10\left( x - 1 \right) + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1} \left[ 3\left( x^2 - 2x + 1 \right) + 10x - 10 + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1} \left[ 3 x^2 - 6x + 3 + 10x - 10 + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1}\left[ 3 x^2 + 4x + 8 \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.10 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.10 | Q 2 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×