English

∫ Sin − 1 ( 2 X 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
Sum

Solution

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\text{ Let x }= \tan \theta\]

\[dx = \text{ sec}^2  \text{  θ }\text{ dθ   }\]

\[ \therefore \int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)dx = \int \sin^{- 1} \left( \frac{2 \tan \theta}{1 + \tan^2 \theta} \right) . \sec^2  \text{ θ    dθ }\]

\[ = \int \sin^{- 1} \left( \sin 2\theta \right) . \sec^2 \text{ θ  dθ }\]

\[ = \int \left( 2\theta \right) \sec^2  \text{ θ  dθ }\]

\[ = 2\int \theta_I \sec^2_{II} \text{ θ  dθ }\]

\[ = 2\left[ \theta\int \sec^2 \text{ θ  dθ }- \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int s {ec}^2 \text{ θ  dθ } \right\}d\theta \right]\]

\[ = 2\left[ \theta . \tan \theta - \int1 . \tan \text{ θ  dθ }\right]\]

\[ = 2\left[ \theta \tan \theta - \text{ log }\left| \sec \theta \right| \right] + C\]

\[ = 2\left[ \theta \tan \theta - \text{ log }\left| 1 + \tan^2 \theta \right|^\frac{1}{2} \right] + C\]

\[ = 2\left[ \left( \tan^{- 1} x \right) \times x - \text{ log }\left( 1 + x^2 \right)^\frac{1}{2} \right] + C\]

\[ = 2 x \tan^{- 1} x - 2 \times \frac{1}{2}\text{ log}\left| 1 + x^2 \right| + C\]

\[ = 2 x \tan^{- 1} x - \text{ log }\left| 1 + x^2 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 36 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \sin^5 x \cos x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int x \cos x\ dx\]

\[\int x e^x \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \sec^6 x\ dx\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×