Advertisements
Advertisements
Question
Solution
\[\int\frac{dx}{x\left( x^6 + 1 \right)}\]
\[ = \int\frac{x^5 dx}{x^6 \left( x^6 + 1 \right)}\]
\[\text{ let }x^6 = t\]
\[ \Rightarrow 6 x^5 dx = dt\]
\[ \Rightarrow x^5 dx = \frac{dt}{6}\]
\[Now, \int\frac{dx}{x^6 \left( x^6 + 1 \right)}\]
\[ = \frac{1}{6}\int\frac{dt}{t\left( t + 1 \right)}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 + t}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 + t + \frac{1}{4} - \frac{1}{4}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{6} \times \frac{1}{2 \times \frac{1}{2}} \text{ log }\left| \frac{t + \frac{1}{2} - \frac{1}{2}}{t + \frac{1}{2} + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{6} \text{ log } \left| \frac{t}{t + 1} \right| + C\]
\[ = \frac{1}{6} \text{ log }\left| \frac{x^6}{x^6 + 1} \right| + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`