English

∫ 1 X ( X 6 + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
Sum

Solution

\[\int\frac{dx}{x\left( x^6 + 1 \right)}\]


\[ = \int\frac{x^5 dx}{x^6 \left( x^6 + 1 \right)}\]
\[\text{ let }x^6 = t\]
\[ \Rightarrow 6 x^5 dx = dt\]


\[ \Rightarrow x^5 dx = \frac{dt}{6}\]
\[Now, \int\frac{dx}{x^6 \left( x^6 + 1 \right)}\]
\[ = \frac{1}{6}\int\frac{dt}{t\left( t + 1 \right)}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 + t}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 + t + \frac{1}{4} - \frac{1}{4}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{6} \times \frac{1}{2 \times \frac{1}{2}} \text{ log  }\left| \frac{t + \frac{1}{2} - \frac{1}{2}}{t + \frac{1}{2} + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{6} \text{ log }  \left| \frac{t}{t + 1} \right| + C\]
\[ = \frac{1}{6} \text{ log  }\left| \frac{x^6}{x^6 + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.16 [Page 90]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.16 | Q 11 | Page 90

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \cos^{- 1} \left( \sin x \right) dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×