English

∫ { X 2 + E L O G X + ( E 2 ) X } D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]

Sum

Solution

`∫       ( x^2 + e^log x+ (e/2 )^x ) dx`

`= ∫  x^2dx + ∫   xdx + ∫ (e/2)^x dx `

\[ = \frac{x^3}{3} + \frac{x^2}{2} + \frac{\left( \frac{e}{2} \right)^x}{\ln \left( \frac{e}{2} \right)} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.02 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.02 | Q 8 | Page 14

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \log_{10} x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×