Advertisements
Advertisements
Question
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
Sum
Solution
`∫ ( x^2 + e^log x+ (e/2 )^x ) dx`
`= ∫ x^2dx + ∫ xdx + ∫ (e/2)^x dx `
\[ = \frac{x^3}{3} + \frac{x^2}{2} + \frac{\left( \frac{e}{2} \right)^x}{\ln \left( \frac{e}{2} \right)} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int \sin^5 x \cos x \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int x^3 \text{ log x dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int \log_{10} x\ dx\]
` ∫ x tan ^2 x dx
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int \tan^3 x\ dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]