English

∫ ( 4 X + 2 ) √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]
Sum

Solution

\[\int\left( 4x + 2 \right) \sqrt{x^2 + x + 1} \text{dx}\]
\[ = 2\int\left( 2x + 1 \right) \sqrt{x^2 + x + 1} dx\]
\[\text{Let }x^2 + x + 1 = t\]
\[ \Rightarrow \left( 2x + 1 \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( 2x + 1 \right) dx = dt\]
\[Now, 2\int\left( 2x + 1 \right) \sqrt{x^2 + x + 1} dx\]
\[ = 2\int\sqrt{t} \text{dt}\]
\[ = 2\int t^\frac{1}{2} \text{dt}\]
\[ = 2 \left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = 2 \times \frac{2}{3} t^\frac{3}{2} + C\]
\[ = \frac{4}{3} \text{t}^\frac{3}{2} + C\]
\[ = \frac{4}{3} \left( x^2 + x + 1 \right)^\frac{3}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 21 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


`int"x"^"n"."log"  "x"  "dx"`

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×