English

∫ 1 X [ 6 ( Log X ) 2 + 7 Log X + 2 ] D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
Sum

Solution

We have,

\[I = \int\frac{dx}{x \left\{ 6 \left( \log x \right)^2 + 7 \log x + 2 \right\}}\]

Putting `log x = t`

\[ \Rightarrow \frac{1}{x} dx = dt\]

\[ \therefore I = \int\frac{dt}{6 t^2 + 7t + 2}\]

\[ = \int\frac{dt}{\left( 3t + 2 \right) \left( 2t + 1 \right)}\]

\[\text{Let }\frac{1}{\left( 3t + 2 \right) \left( 2t + 1 \right)} = \frac{A}{3t + 2} + \frac{B}{2t + 1}\]

\[ \Rightarrow \frac{1}{\left( 3t + 2 \right) \left( 2t + 1 \right)} = \frac{A \left( 2t + 1 \right) + B \left( 3t + 2 \right)}{\left( 3t + 2 \right) \left( 2t + 1 \right)}\]

\[ \Rightarrow 1 = A \left( 2t + 1 \right) + B \left( 3t + 2 \right)\]

Putting `2t + 1 = 0`

\[ \Rightarrow t = - \frac{1}{2}\]

\[1 = 0 + B \left( 3 \times - \frac{1}{2} + 2 \right)\]

\[ \Rightarrow 1 = B \left( \frac{1}{2} \right)\]

\[ \Rightarrow B = 2\]

Putting `3t + 2 = 0`

\[ \Rightarrow t = - \frac{2}{3}\]

\[1 = A \left( 2 \times - \frac{2}{3} + 1 \right) + 0\]

\[ \Rightarrow 1 = A \left( - \frac{4}{3} + 1 \right)\]

\[ \Rightarrow 1 = A \left( - \frac{1}{3} \right)\]

\[ \Rightarrow A = - 3\]

\[ \therefore I = \int\left( - \frac{3}{3t + 2} + \frac{2}{2t + 1} \right)dt\]

\[ = - 3 \frac{\log \left| 3t + 2 \right|}{3} + 2 \frac{\log \left| 2t + 1 \right|}{2} + C\]

\[ = - \log \left| 3t + 2 \right| + \log \left| 2t + 1 \right| + C\]

\[ = \log \left| \frac{2t + 1}{3t + 2} \right| + C\]

\[ = \log \left| \frac{2 \log x + 1}{3 \log x + 2} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 22 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×