Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int\frac{dx}{x \left\{ 6 \left( \log x \right)^2 + 7 \log x + 2 \right\}}\]
Putting `log x = t`
\[ \Rightarrow \frac{1}{x} dx = dt\]
\[ \therefore I = \int\frac{dt}{6 t^2 + 7t + 2}\]
\[ = \int\frac{dt}{\left( 3t + 2 \right) \left( 2t + 1 \right)}\]
\[\text{Let }\frac{1}{\left( 3t + 2 \right) \left( 2t + 1 \right)} = \frac{A}{3t + 2} + \frac{B}{2t + 1}\]
\[ \Rightarrow \frac{1}{\left( 3t + 2 \right) \left( 2t + 1 \right)} = \frac{A \left( 2t + 1 \right) + B \left( 3t + 2 \right)}{\left( 3t + 2 \right) \left( 2t + 1 \right)}\]
\[ \Rightarrow 1 = A \left( 2t + 1 \right) + B \left( 3t + 2 \right)\]
Putting `2t + 1 = 0`
\[ \Rightarrow t = - \frac{1}{2}\]
\[1 = 0 + B \left( 3 \times - \frac{1}{2} + 2 \right)\]
\[ \Rightarrow 1 = B \left( \frac{1}{2} \right)\]
\[ \Rightarrow B = 2\]
Putting `3t + 2 = 0`
\[ \Rightarrow t = - \frac{2}{3}\]
\[1 = A \left( 2 \times - \frac{2}{3} + 1 \right) + 0\]
\[ \Rightarrow 1 = A \left( - \frac{4}{3} + 1 \right)\]
\[ \Rightarrow 1 = A \left( - \frac{1}{3} \right)\]
\[ \Rightarrow A = - 3\]
\[ \therefore I = \int\left( - \frac{3}{3t + 2} + \frac{2}{2t + 1} \right)dt\]
\[ = - 3 \frac{\log \left| 3t + 2 \right|}{3} + 2 \frac{\log \left| 2t + 1 \right|}{2} + C\]
\[ = - \log \left| 3t + 2 \right| + \log \left| 2t + 1 \right| + C\]
\[ = \log \left| \frac{2t + 1}{3t + 2} \right| + C\]
\[ = \log \left| \frac{2 \log x + 1}{3 \log x + 2} \right| + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
Evaluate the following integrals:
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]