मराठी

∫ 1 X [ 6 ( Log X ) 2 + 7 Log X + 2 ] D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{dx}{x \left\{ 6 \left( \log x \right)^2 + 7 \log x + 2 \right\}}\]

Putting `log x = t`

\[ \Rightarrow \frac{1}{x} dx = dt\]

\[ \therefore I = \int\frac{dt}{6 t^2 + 7t + 2}\]

\[ = \int\frac{dt}{\left( 3t + 2 \right) \left( 2t + 1 \right)}\]

\[\text{Let }\frac{1}{\left( 3t + 2 \right) \left( 2t + 1 \right)} = \frac{A}{3t + 2} + \frac{B}{2t + 1}\]

\[ \Rightarrow \frac{1}{\left( 3t + 2 \right) \left( 2t + 1 \right)} = \frac{A \left( 2t + 1 \right) + B \left( 3t + 2 \right)}{\left( 3t + 2 \right) \left( 2t + 1 \right)}\]

\[ \Rightarrow 1 = A \left( 2t + 1 \right) + B \left( 3t + 2 \right)\]

Putting `2t + 1 = 0`

\[ \Rightarrow t = - \frac{1}{2}\]

\[1 = 0 + B \left( 3 \times - \frac{1}{2} + 2 \right)\]

\[ \Rightarrow 1 = B \left( \frac{1}{2} \right)\]

\[ \Rightarrow B = 2\]

Putting `3t + 2 = 0`

\[ \Rightarrow t = - \frac{2}{3}\]

\[1 = A \left( 2 \times - \frac{2}{3} + 1 \right) + 0\]

\[ \Rightarrow 1 = A \left( - \frac{4}{3} + 1 \right)\]

\[ \Rightarrow 1 = A \left( - \frac{1}{3} \right)\]

\[ \Rightarrow A = - 3\]

\[ \therefore I = \int\left( - \frac{3}{3t + 2} + \frac{2}{2t + 1} \right)dt\]

\[ = - 3 \frac{\log \left| 3t + 2 \right|}{3} + 2 \frac{\log \left| 2t + 1 \right|}{2} + C\]

\[ = - \log \left| 3t + 2 \right| + \log \left| 2t + 1 \right| + C\]

\[ = \log \left| \frac{2t + 1}{3t + 2} \right| + C\]

\[ = \log \left| \frac{2 \log x + 1}{3 \log x + 2} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 22 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×