मराठी

∫ X 2 + 1 X 2 − 5 X + 6 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 
बेरीज

उत्तर

\[\text{ Let }I\int\left( \frac{x^2 + 1}{x^2 - 5x + 6} \right)dx\]
\[\text{Dividing Numerator by Denominator}\]


\[\frac{x^2 + 1}{x^2 - 5x + 6} = 1 + \left( \frac{5x - 5}{x^2 - 5x + 6} \right) . . . . . \left( 1 \right)\]
\[\text{ Also } \frac{5x - 5}{x^2 - 5x + 6} = \frac{5x - 5}{\left( x - 2 \right) \left( x - 3 \right)}\]
\[\text{ Let } \frac{5x - 5}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{A}{x - 2} + \frac{B}{x - 3}\]
\[ \Rightarrow \frac{5x - 5}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{A \left( x - 3 \right) + B \left( x - 2 \right)}{\left( x - 2 \right) \left( x - 3 \right)}\]
\[ \Rightarrow 5x - 5 = A \left( x - 3 \right) + B \left( x - 2 \right)\]
\[\text{ let } x = 3\]
\[5 \times 3 - 5 = A \times 0 + B \left( 3 - 2 \right)\]
\[10 = B\]
\[\text{ let } x = 2\]
\[5 \times 2 - 5 = A \left( 2 - 3 \right) + B \times 0\]
\[A = - 5\]
\[\frac{5x - 5}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{- 5}{x - 2} + \frac{10}{x - 3} . . . . . \left( 2 \right)\]
\[\text{ from }\left( 1 \right) \text{ and }\left( 2 \right)\]
\[I = \int dx - 5\int\frac{dx}{x - 2} + 10\int\frac{dx}{x - 3}\]
\[ = x - 5 \text{ log } \left| x - 2 \right| + 10 \text{ log } \left| x - 3 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.2 | Q 4 | पृष्ठ १०६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×