Advertisements
Advertisements
प्रश्न
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
बेरीज
उत्तर
\[\text{ Let I }= \int\sqrt{\frac{16 + \left( \log x \right)^2}{x}}\text{ dx}\]
\[\text{ Putting log x }= t\]
\[ \Rightarrow \frac{1}{x} \text{ dx}= dt\]
\[ \therefore I = \int\sqrt{16 + t^2}dt\]
\[ = \int\sqrt{4^2 + t^2}dt\]
\[ = \frac{t}{2} \sqrt{4^2 + t^2} + \frac{4^2}{2} \text{ log} \left| t + \sqrt{4^2 + t^2} \right| + C\]
\[ = \frac{\log x}{2} \sqrt{16 + \left( \log x \right)^2} + 8 \text{ log }\left| \log x + \sqrt{16 + \left( \log x \right)^2} \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int x \sec^2 2x\ dx\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]