Advertisements
Advertisements
प्रश्न
\[\int x \sec^2 2x\ dx\]
बेरीज
उत्तर
\[\int x_I \cdot \sec^2 2_{II}x\ dx \]
\[ = x\int \sec^2 2x\ dx - \int\left\{ \frac{d}{dx}\left( x \right)\int \sec^2 2x\ dx \right\}dx\]
\[ = \frac{x \tan 2x}{2} - \int1 \cdot \frac{\tan 2x}{2} dx\]
\[ = \frac{x \tan 2x}{2} - \frac{1}{2} \frac{\text{ ln } \left| \sec 2x \right|}{2} + C\]
\[ = \frac{x \tan 2x}{2} - \frac{1}{4} \text{ ln} \left| \sec 2x \right| + C\]
\[ = x\int \sec^2 2x\ dx - \int\left\{ \frac{d}{dx}\left( x \right)\int \sec^2 2x\ dx \right\}dx\]
\[ = \frac{x \tan 2x}{2} - \int1 \cdot \frac{\tan 2x}{2} dx\]
\[ = \frac{x \tan 2x}{2} - \frac{1}{2} \frac{\text{ ln } \left| \sec 2x \right|}{2} + C\]
\[ = \frac{x \tan 2x}{2} - \frac{1}{4} \text{ ln} \left| \sec 2x \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int \cos^2 \frac{x}{2} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
` ∫ sec^6 x tan x dx `
\[\int \cot^5 x \text{ dx }\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int x \sin x \cos x\ dx\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]