Advertisements
Advertisements
प्रश्न
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
बेरीज
उत्तर
` ∫ {x dx }/ {x^4 + 2 x^2 +3} `
\[\text{ let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \Rightarrow \text{ x dx }= \frac{dt}{2}\]
Now, ` ∫ {x dx }/ {x^4 + 2 x^2 +3} `
\[ = \frac{1}{2}\int\frac{dt}{t^2 + 2t + 3}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 + 2t + 1 + 2}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t + 1 \right)^2 + \left( \sqrt{2} \right)^2} \]
\[ = \frac{1}{2} \times \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t + 1}{\sqrt{2}} \right) + C \left[ \because \int\frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{- 1} \left( \frac{x}{a} \right) + C \right]\]
\[ = \frac{1}{2\sqrt{2}} \tan^{- 1} \left( \frac{x^2 + 1}{\sqrt{2}} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int x \cos x\ dx\]
\[\int2 x^3 e^{x^2} dx\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int \sec^6 x\ dx\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]