मराठी

∫ Sin 2 X Sin 4 X + Cos 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int\frac{\sin 2x}{\sin^4 x + \cos^4 x}dx\]
\[ = \int\frac{2 \text{ sin  x  }\cdot \text{ cos  x  dx}}{\sin^4 x + \cos^4 x}\]
\[\text{Dividing numerator and denominator by} \cos^4 x\]
\[ \Rightarrow \int\frac{2 \frac{\text{ sin  x }\cdot \text{ cos  x}}{\cos^4 x}dx}{1 + \tan^4 x}\]
\[ \Rightarrow \int\frac{2 \tan x \cdot \text{ sec}^2 x dx}{1 + \left( \tan^2 x \right)^2}\]
\[\text{ Putting  tan}^2 x = t\]
\[ \Rightarrow 2 \tan x \cdot \text{ sec}^2 \text{  x  dx}\]
\[ \therefore I = \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} t + C\]
\[ = \tan^{- 1} \left( \text{ tan}^2 x \right) + C......... \left[ \because t = \tan {}^2 x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 41 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

 
` ∫  x tan ^2 x dx 

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \cot^4 x\ dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×