Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
बेरीज
उत्तर
` ∫ cos x / \sqrt{4-sin^2 x}`
\[\text{ let }\sin x = t\]
\[ \Rightarrow \text{ cos x dx }= dt\]
Now, ` ∫ cos x / \sqrt{4-sin^2 x}`
\[ = \int\frac{dt}{\sqrt{4 - t^2}}\]
\[ = \int\frac{dt}{\sqrt{2^2 - t^2}}\]
\[ = \sin^{- 1} \left( \frac{t}{2} \right) + C\]
\[ = \sin^{- 1} \left( \frac{\sin x}{2} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int \cot^6 x \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]