मराठी

∫ E X ( Cos X − Sin X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \cos x - \sin x \right) dx\]
बेरीज

उत्तर

\[\text{  Let I } = \int e^x \left( \cos x - \sin x \right) dx \]

\[\text{ let e}^x \cos x = t \]

\[\text{  Diff both  sides  w . r . t x}\]

\[ e^x \cdot \cos x + e^x \left( - \sin x \right) = \frac{dt}{dx} \text{ Put e}^x f\left( x \right) = t\]

\[ \Rightarrow e^x \left( \cos x - \sin x \right) dx = dt\]

\[ \therefore \int e^x \left( \cos x - \sin x \right) dx = \int dt\]

\[ \Rightarrow I = t + C\]

\[ = e^x \cos x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.26 | Q 1 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \tan^3 x\ dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×