Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^x \left( \cos x - \sin x \right) dx \]
\[\text{ let e}^x \cos x = t \]
\[\text{ Diff both sides w . r . t x}\]
\[ e^x \cdot \cos x + e^x \left( - \sin x \right) = \frac{dt}{dx} \text{ Put e}^x f\left( x \right) = t\]
\[ \Rightarrow e^x \left( \cos x - \sin x \right) dx = dt\]
\[ \therefore \int e^x \left( \cos x - \sin x \right) dx = \int dt\]
\[ \Rightarrow I = t + C\]
\[ = e^x \cos x + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]