मराठी

∫ √ 1 + X X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\sqrt{\frac{1 + x}{x}}dx\]

\[ = \int\frac{\sqrt{1 + x}}{\sqrt{x}} \times \frac{\sqrt{1 + x}}{\sqrt{1 + x}}dx\]

\[ = \int\left( \frac{1 + x}{\sqrt{x^2 + x}} \right)dx\]

\[\text{ Let  x }+ 1 = A\frac{d}{dx}\left( x^2 + x \right) + B\]

\[ \Rightarrow x + 1 = A \left( 2x + 1 \right) + B\]

\[ \Rightarrow x + 1 = \left( 2A \right)x + A + B\]

\[\text{Equating the coefficients of like terms}\]

\[2A = 1\]

\[ \Rightarrow A = \frac{1}{2}\]

\[\text{ and  A + B = 1 }\]

\[ \Rightarrow \frac{1}{2} + B = 1\]

\[ \therefore B = \frac{1}{2}\]

\[ \therefore I = \int\frac{\left( x + 1 \right)}{\sqrt{x^2 + x}}dx\]

\[ = \int\left( \frac{\frac{1}{2} \left( 2x + 1 \right) + \frac{1}{2}}{\sqrt{x^2 + x}} \right)dx\]

\[ = \frac{1}{2}\int\frac{\left( 2x + 1 \right)}{\sqrt{x^2 + x}}dx + \frac{1}{2}\int\frac{1}{\sqrt{x^2 + x}}dx\]

\[\text{ Putting x}^2 + x = t\]

\[ \Rightarrow \left( 2x + 1 \right) dx = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{1}{\sqrt{t}}dt + \frac{1}{2}\int\frac{1}{\sqrt{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2}\int\frac{1}{\sqrt{t}}dt + \frac{1}{2}\int\frac{1}{\sqrt{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + \frac{1}{2}\int\frac{1}{\sqrt{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2} \times 2 \sqrt{t} + \frac{1}{2} \text{ ln }\left| x + \frac{1}{2} + \sqrt{\left( x + \frac{1}{2} \right)^2 - \frac{1}{4}} \right| + C............ \left[ \because \int\frac{1}{\sqrt{x^2 - a^2}}dx = \text{ ln }\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]

\[ = \sqrt{t} + \frac{1}{2} \text{ ln} \left| x + \frac{1}{2} + \sqrt{x^2 + x} \right| + C\]

\[ = \sqrt{x^2 + x} + \frac{1}{2} \text{ ln} \left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x} \right| + C................... \left[ \because t = x^2 + x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 53 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int x^3 \cos x^4 dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

` ∫      tan^5    x   dx `


\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×