मराठी

∫ ( X + 2 ) √ 3 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]
बेरीज

उत्तर

\[Let I = \int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\text{Putting 3x + 5 }= t\]
\[ \Rightarrow x = \frac{t - 5}{3}\]

\[\Rightarrow 3dx = dt\]
\[ \Rightarrow dx = \frac{dt}{3}\]

` ∴ I = ∫ ( {t-5} /3 +2) \sqrt t    dt/3 `
`  =1/3   ∫ ( {t-5+6} /3 ) \sqrt t    dt `
\[ = \frac{1}{9}\int\left( t^\frac{3}{2} + t^\frac{1}{2} \right) dt\]
\[ = \frac{1}{9}\left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{9}\left[ \frac{2}{5} t^\frac{5}{2} + \frac{2}{3} t^\frac{3}{2} \right] + C\]
\[ = \frac{1}{9}\left[ \frac{2}{5} \left( 3x + 5 \right)^\frac{5}{2} + \frac{2}{3} \left( 3x + 5 \right)^\frac{3}{2} \right] + C \left[ \because t = 3x + 5 \right]\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{3x + 5}{5} + \frac{1}{3} \right\} \right] + C\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{9x + 15 + 5}{15} \right\} \right] + C\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{9x + 20}{15} \right\} \right] + C\]
\[ = \frac{2}{135} \left( 3x + 5 \right)^\frac{3}{2} \left( 9x + 20 \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.05 | Q 4 | पृष्ठ ३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


`  ∫  sin 4x cos  7x  dx  `

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x \cos^2 x\ dx\]

`int"x"^"n"."log"  "x"  "dx"`

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int \sec^6 x\ dx\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \log_{10} x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×