Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int \tan^5 \text{ x dx }\]
\[ = \int \tan^3 x \cdot \tan^2\text{ x dx }\]
\[ = \int \tan^3 x \left( \sec^2 x - 1 \right) dx\]
\[ = \int \tan^3 x \cdot \sec^2 \text{ x dx} - \int \tan^3 \text{ x dx}\]
\[ = \int \tan^3 x \cdot \sec^2 \text{ x dx} - \int\tan x \cdot \tan^2 \text{ x dx} \]
\[ = \int \tan^3 x \cdot \sec^2 \text{ x dx} - \int\tan x \cdot \left( \sec^2 x - 1 \right) dx\]
\[ = \int \tan^3 x \cdot \sec^2 x dx - \int\tan x \cdot \sec^2\text{ x dx} + \int\tan x dx\]
\[\text{ Putting tan x = t in the Ist and IInd integral} . \]
\[ \Rightarrow \sec^2\text{ x dx} = dt\]
\[ \therefore I = \int t^3 \cdot dt - \int t \cdot dt + \int\text{ tan x dx }\]
\[ = \frac{t^4}{4} - \frac{t^2}{2} + \text{ ln} \left| \text{ sec x} \right| + C\]
\[ = \frac{\tan^4 x}{4} - \frac{\tan^2 x}{2} + \text{ ln} \left| \text{ sec x }\right| + C \left[ \because t = \text{ tan x} \right]\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]