मराठी

∫ √ 3 − 2 X − 2 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
बेरीज

उत्तर

\[\text{ Let I } = \int\sqrt{3 - 2x - 2 x^2}\text{ dx}\]
\[ = \int\sqrt{3 - \left( 2 x^2 + 2x \right)}\text{ dx}\]
\[ = \int\sqrt{3 - 2 \left( x^2 + x \right)}\text{ dx}\]
\[ = \int\sqrt{3 - 2 \left( x^2 + x + \frac{1}{4} - \frac{1}{4} \right)}\text{ dx}\]
\[ = \int\sqrt{3 - 2 \left( x + \frac{1}{2} \right)^2 + \frac{1}{2}}\text{ dx}\]
\[ = \int\sqrt{\frac{7}{2} - 2 \left( x + \frac{1}{2} \right)^2}\text{ dx}\]
\[ = \sqrt{2}\int\sqrt{\frac{7}{4} - \left( x + \frac{1}{2} \right)^2}\text{ dx}\]
\[ = \sqrt{2}\int\sqrt{\left( \frac{\sqrt{7}}{2} \right)^2 - \left( x + \frac{1}{2} \right)^2}\text{ dx}\]
\[ = \sqrt{2} \times \left( \frac{x + \frac{1}{2}}{2} \right) \sqrt{\left( \frac{\sqrt{7}}{2} \right)^2 - \left( x + \frac{1}{2} \right)^2} + \sqrt{2} \times \frac{7}{4 \times 2} \sin^{- 1} \left( \frac{x + \frac{1}{2}}{\frac{\sqrt{7}}{2}} \right) + C\]
\[ = \frac{2x + 1}{4} \sqrt{3 - 2x - 2 x^2} + \frac{7}{4\sqrt{2}} \sin^{- 1} \left( \frac{2x + 1}{\sqrt{7}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.28 [पृष्ठ १५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.28 | Q 11 | पृष्ठ १५४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^3 \cos x^2 dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \log_{10} x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×