मराठी

∫ 2 X ( X 2 + 1 ) ( X 2 + 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
बेरीज

उत्तर

We have,
\[I = \int\frac{2x dx}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)}\]
\[\text{Putting }x^2 = t\]
\[ \Rightarrow 2x\ dx = dt\]
\[ \therefore I = \int\frac{dt}{\left( t + 1 \right) \left( t + 3 \right)}\]
\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 3 \right)} = \frac{A}{t + 1} + \frac{B}{t + 3}\]
\[ \Rightarrow \frac{1}{\left( t + 1 \right) \left( t + 3 \right)} = \frac{A \left( t + 3 \right) + B \left( t + 1 \right)}{\left( t + 1 \right) \left( t + 3 \right)}\]
\[ \Rightarrow 1 = A \left( t + 3 \right) + B \left( t + 1 \right)\]
Putting t + 3 = 0
\[ \Rightarrow t = - 3\]
\[1 = A \times 0 + B \left( - 3 + 1 \right)\]
\[ \Rightarrow B = - \frac{1}{2}\]
Putting t + 1 = 0
\[ \Rightarrow t = - 1\]
\[1 = A \left( - 1 + 3 \right) + B \left( - 1 + 1 \right)\]
\[ \Rightarrow 1 = A \times 2 + B \times 0\]
\[ \Rightarrow A = \frac{1}{2}\]
Then,
\[I = \frac{1}{2}\int\frac{dt}{t + 1} - \frac{1}{2}\int\frac{dt}{t + 3}\]
\[ = \frac{1}{2} \log \left| t + 1 \right| - \frac{1}{2} \log \left| t + 3 \right| + C\]
\[ = \frac{1}{2} \log \left| \frac{t + 1}{t + 3} \right| + C\]
\[ = \frac{1}{2} \log \left| \frac{x^2 + 1}{x^2 + 3} \right| + C\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 12 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 - \cos 2x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

` ∫   tan   x   sec^4  x   dx  `


` ∫  sec^6   x  tan    x   dx `

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int \cot^4 x\ dx\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×