मराठी

∫ 1 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
बेरीज

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{dx}{x^4 + x^2 + 1}\]
\[ = \frac{1}{2}\int \frac{2 \text{ dx }}{x^4 + x^2 + 1}\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{\left( x^2 + 1 \right) - \left( x^2 - 1 \right)}{x^4 + x^2 + 1} \right)dx\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{x^2 + 1}{x^4 + x^2 + 1} \right)dx - \frac{1}{2}\int\left( \frac{x^2 - 1}{x^4 + x^2 + 1} \right)dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[I = \frac{1}{2}\int\left( \frac{1 + \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} \right)dx - \frac{1}{2}\int\left( \frac{1 - \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2} - 2 + 3} \right)dx - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} + 2 - 1}\]
\[ = \frac{1}{2}\int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{\left( x - \frac{1}{x} \right)^2 + \left( \sqrt{3} \right)^2} - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{\left( x + \frac{1}{x} \right)^2 - 1^2}\]
\[\text{ Putting x } - \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x^2} \right)dx = dt\]
\[\text{ Putting x} + \frac{1}{x} = p\]
\[ \Rightarrow \left( 1 - \frac{1}{x^2} \right)dx = dp\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{t^2 + \left( \sqrt{3} \right)^2} - \frac{1}{2}\int\frac{dp}{p^2 - 1^2}\]
\[ = \frac{1}{2} \times \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t}{\sqrt{3}} \right) - \frac{1}{2} \times \frac{1}{2 \times 1}\text{ log }\left| \frac{p - 1}{p + 1} \right| + C\]
\[ = \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{3}} \right) - \frac{1}{4}\text{ log } \left| \frac{x + \frac{1}{x} - 1}{x + \frac{1}{x} + 1} \right| + C\]
\[ = \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{x^2 - 1}{x\sqrt{3}} \right) - \frac{1}{4}\text{ log }\left| \frac{x^2 - x + 1}{x^2 + x + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.31 [पृष्ठ १९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.31 | Q 4 | पृष्ठ १९०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int \tan^5 x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×