मराठी

∫ 2 X Sec 3 ( X 2 + 3 ) Tan ( X 2 + 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
बेरीज

उत्तर

\[\int2x \sec^3 \left( x^2 + 3 \right) \cdot \tan \left( x^2 + 3 \right) dx\]
\[ = \int \sec^2 \left( x^2 + 3 \right) \cdot \sec \left( x^2 + 3 \right) \cdot \tan \left( x^2 + 3 \right) \cdot \text{2x dx}\]
\[\text{Let }\sec \left( x^2 + 3 \right) = t\]
\[ \Rightarrow \sec \left( x^2 + 3 \right) \cdot \tan \left( x^2 + 3 \right) \cdot 2x = \frac{dt}{dx}\]
\[ \Rightarrow \sec \left( x^2 + 3 \right) \cdot \tan \left( x^2 + 3 \right) \cdot \text{2x dx} = dt\]
\[Now, \int \sec^2 \left( x^2 + 3 \right) \cdot \sec \left( x^2 + 3 \right) \cdot \tan \left( x^2 + 3 \right) \cdot \text{2x dx}\]
\[ = \int t^2 dt\]
\[ = \frac{t^3}{3} + C\]
\[ = \frac{\sec^3 \left( x^2 + 3 \right)}{3} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 39 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{x^3}{x - 2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

` ∫    cos  mx  cos  nx  dx `

 


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×