मराठी

∫ E X ( 1 − X ) 2 ( 1 + X 2 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int e^x \left[ \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \right]dx\]

\[ = \int e^x \left[ \frac{1 + x^2 - 2x}{\left( 1 + x^2 \right)^2} \right]dx\]

\[ = \int e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx\]

\[\text{ Here,} f(x) = \frac{1}{1 + x^2}\]

\[ \Rightarrow f'(x) = \frac{- 2x}{\left( 1 + x^2 \right)^2}\]

\[\text{ Put e}^x f(x) = t\]

\[ \Rightarrow e^x \frac{1}{1 + x^2} = t\]

\[\text{ Diff both sides w . r . t x }\]

\[ e^x \frac{1}{1 + x^2} + e^x \frac{- 1}{\left( 1 + x^2 \right)^2}2x = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx = dt\]

\[ \therefore \int e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx = \int dt\]

\[ \Rightarrow I = t + C\]

\[ = \frac{e^x}{1 + x^2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.26 | Q 12 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \cos^5 x\ dx\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×