Advertisements
Advertisements
Question
Solution
\[\text{ Let I } = \int e^x \left[ \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \right]dx\]
\[ = \int e^x \left[ \frac{1 + x^2 - 2x}{\left( 1 + x^2 \right)^2} \right]dx\]
\[ = \int e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx\]
\[\text{ Here,} f(x) = \frac{1}{1 + x^2}\]
\[ \Rightarrow f'(x) = \frac{- 2x}{\left( 1 + x^2 \right)^2}\]
\[\text{ Put e}^x f(x) = t\]
\[ \Rightarrow e^x \frac{1}{1 + x^2} = t\]
\[\text{ Diff both sides w . r . t x }\]
\[ e^x \frac{1}{1 + x^2} + e^x \frac{- 1}{\left( 1 + x^2 \right)^2}2x = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx = dt\]
\[ \therefore \int e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx = \int dt\]
\[ \Rightarrow I = t + C\]
\[ = \frac{e^x}{1 + x^2} + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
Integrate the following integrals:
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
Evaluate the following integral:
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]