English

∫ E X ( 1 − X ) 2 ( 1 + X 2 ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int e^x \left[ \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \right]dx\]

\[ = \int e^x \left[ \frac{1 + x^2 - 2x}{\left( 1 + x^2 \right)^2} \right]dx\]

\[ = \int e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx\]

\[\text{ Here,} f(x) = \frac{1}{1 + x^2}\]

\[ \Rightarrow f'(x) = \frac{- 2x}{\left( 1 + x^2 \right)^2}\]

\[\text{ Put e}^x f(x) = t\]

\[ \Rightarrow e^x \frac{1}{1 + x^2} = t\]

\[\text{ Diff both sides w . r . t x }\]

\[ e^x \frac{1}{1 + x^2} + e^x \frac{- 1}{\left( 1 + x^2 \right)^2}2x = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx = dt\]

\[ \therefore \int e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx = \int dt\]

\[ \Rightarrow I = t + C\]

\[ = \frac{e^x}{1 + x^2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.26 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.26 | Q 12 | Page 14

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

` ∫   cos  3x   cos  4x` dx  

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \sin^7 x  \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×