English

∫ Sin 2 X ( 1 + Sin X ) ( 2 + Sin X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
Sum

Solution

We have,
\[ I = \int\frac{\sin 2x dx}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)}\]
\[ = \int\frac{2 \sin x \cos x dx}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)}\]
Putting sin x = t

\[ \Rightarrow \cos x dx = dt\]
\[ \therefore I = \int\frac{2t dt}{\left( 1 + t \right) \left( 2 + t \right)}\]
\[ = 2\int\frac{t dt}{\left( 1 + t \right) \left( 2 + t \right)}\]
\[\text{Let }\frac{t}{\left( 1 + t \right) \left( 2 + t \right)} = \frac{A}{1 + t} + \frac{B}{2 + t}\]
\[ \Rightarrow \frac{t}{\left( 1 + t \right) \left( 2 + t \right)} = \frac{A \left( 2 + t \right) + B \left( 1 + t \right)}{\left( 1 + t \right) \left( 2 + t \right)}\]
\[ \Rightarrow t = A \left( 2 + t \right) + B \left( 1 + t \right)\]
Putting 2 + t = 0

\[ \Rightarrow t = - 2\]
\[ - 2 = A \times 0 + B \left( - 2 + 1 \right)\]
\[ \Rightarrow - 2 = B \left( - 1 \right)\]
\[ \Rightarrow B = 2\]
\[\text{Let }t + 1 = 0\]
\[t = - 1\]
\[ \Rightarrow - 1 = A \left( - 1 + 2 \right) + B \times 0\]
\[A = - 1\]
\[ \therefore I = 2\int\left( \frac{- 1}{t + 1} + \frac{2}{t + 2} \right)dt\]
\[ = 2 \left[ - \log \left| t + 1 \right| + 2 \log \left| t + 2 \right| \right] + C\]
\[ = 4 \log \left| t + 2 \right| - 2 \log \left| t + 1 \right| + C\]
\[ = \log \left| \frac{\left( t + 2 \right)^4}{\left( t + 1 \right)^2} \right| + C\]
\[ = \log \left| \frac{\left( \sin x + 2 \right)^4}{\left( \sin x + 1 \right)^2} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 11 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×