Advertisements
Advertisements
Question
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
Sum
Solution
We have,
\[I = \int\frac{2x dx}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)}\]
\[\text{Putting }x^2 = t\]
\[ \Rightarrow 2x\ dx = dt\]
\[ \therefore I = \int\frac{dt}{\left( t + 1 \right) \left( t + 3 \right)}\]
\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 3 \right)} = \frac{A}{t + 1} + \frac{B}{t + 3}\]
\[ \Rightarrow \frac{1}{\left( t + 1 \right) \left( t + 3 \right)} = \frac{A \left( t + 3 \right) + B \left( t + 1 \right)}{\left( t + 1 \right) \left( t + 3 \right)}\]
\[ \Rightarrow 1 = A \left( t + 3 \right) + B \left( t + 1 \right)\]
Putting t + 3 = 0
\[ \Rightarrow t = - 3\]
\[1 = A \times 0 + B \left( - 3 + 1 \right)\]
\[ \Rightarrow B = - \frac{1}{2}\]
Putting t + 1 = 0
\[ \Rightarrow t = - 1\]
\[1 = A \left( - 1 + 3 \right) + B \left( - 1 + 1 \right)\]
\[ \Rightarrow 1 = A \times 2 + B \times 0\]
\[ \Rightarrow A = \frac{1}{2}\]
Then,
\[I = \frac{1}{2}\int\frac{dt}{t + 1} - \frac{1}{2}\int\frac{dt}{t + 3}\]
\[ = \frac{1}{2} \log \left| t + 1 \right| - \frac{1}{2} \log \left| t + 3 \right| + C\]
\[ = \frac{1}{2} \log \left| \frac{t + 1}{t + 3} \right| + C\]
\[ = \frac{1}{2} \log \left| \frac{x^2 + 1}{x^2 + 3} \right| + C\]
\[ \Rightarrow 2x\ dx = dt\]
\[ \therefore I = \int\frac{dt}{\left( t + 1 \right) \left( t + 3 \right)}\]
\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 3 \right)} = \frac{A}{t + 1} + \frac{B}{t + 3}\]
\[ \Rightarrow \frac{1}{\left( t + 1 \right) \left( t + 3 \right)} = \frac{A \left( t + 3 \right) + B \left( t + 1 \right)}{\left( t + 1 \right) \left( t + 3 \right)}\]
\[ \Rightarrow 1 = A \left( t + 3 \right) + B \left( t + 1 \right)\]
Putting t + 3 = 0
\[ \Rightarrow t = - 3\]
\[1 = A \times 0 + B \left( - 3 + 1 \right)\]
\[ \Rightarrow B = - \frac{1}{2}\]
Putting t + 1 = 0
\[ \Rightarrow t = - 1\]
\[1 = A \left( - 1 + 3 \right) + B \left( - 1 + 1 \right)\]
\[ \Rightarrow 1 = A \times 2 + B \times 0\]
\[ \Rightarrow A = \frac{1}{2}\]
Then,
\[I = \frac{1}{2}\int\frac{dt}{t + 1} - \frac{1}{2}\int\frac{dt}{t + 3}\]
\[ = \frac{1}{2} \log \left| t + 1 \right| - \frac{1}{2} \log \left| t + 3 \right| + C\]
\[ = \frac{1}{2} \log \left| \frac{t + 1}{t + 3} \right| + C\]
\[ = \frac{1}{2} \log \left| \frac{x^2 + 1}{x^2 + 3} \right| + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
`∫ cos ^4 2x dx `
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int x \sec^2 2x\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{\cos^7 x}{\sin x} dx\]