English

∫ ( X 2 + 1 ) ( X 2 + 2 ) ( X 2 + 3 ) ( X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 

Sum

Solution

We have,
\[I = \int \frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)}\]
\[\text{Putting }x^2 = t\]
Then,
\[\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \frac{\left( t + 1 \right) \left( t + 2 \right)}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{t^2 + 3t + 2}{t^2 + 7t + 12}\]

Degree of numerator is equal to degree of denominator.

We divide numerator by denominator.

\[\therefore \frac{t^2 + 3t + 2}{t^2 + 7t + 12} = 1 - \left( \frac{4t + 10}{t^2 + 7t + 12} \right)\]
\[ \Rightarrow \frac{t^2 + 3t + 2}{t^2 + 7t + 12} = 1 - \frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} ............. \left( 1 \right)\]
\[\text{Let }\frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{A}{t + 3} + \frac{B}{t + 4}\]
\[ \Rightarrow \frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{A\left( t + 4 \right) + B\left( t + 3 \right)}{\left( t + 3 \right) \left( t + 4 \right)}\]
\[ \Rightarrow 4t + 10 = A\left( t + 4 \right) + B\left( t + 3 \right)\]
\[\text{Putting t + 4 = 0}\]
\[ \Rightarrow t = - 4\]
\[ \therefore - 16 + 10 = B\left( - 1 \right)\]
\[ \Rightarrow B = 6\]
\[\text{Putting t + 3 = 0}\]
\[ \Rightarrow t = - 3\]
\[ \therefore - 12 + 10 = A\left( - 3 + 4 \right)\]
\[ \Rightarrow A = - 2\]
\[ \therefore \frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{- 2}{t + 3} + \frac{6}{t + 4} ................ \left( 2 \right)\]
From (1) and (2)
\[\frac{t^2 + 3t + 2}{t^2 + 7t + 12} = 1 + \frac{2}{t + 3} - \frac{6}{t + 4}\]
\[ \therefore \int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)dx}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \int dx + 2\int\frac{dx}{x^2 + \left( \sqrt{3} \right)^2} - 6\int\frac{dx}{x^2 + 2^2}\]
\[ = x + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - \frac{6}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C\]
\[ = x + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - 3 \tan^{- 1} \left( \frac{x}{2} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 178]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 63 | Page 178

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sec^4 2x \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×