हिंदी

∫ ( X 2 + 1 ) ( X 2 + 2 ) ( X 2 + 3 ) ( X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 

योग

उत्तर

We have,
\[I = \int \frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)}\]
\[\text{Putting }x^2 = t\]
Then,
\[\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \frac{\left( t + 1 \right) \left( t + 2 \right)}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{t^2 + 3t + 2}{t^2 + 7t + 12}\]

Degree of numerator is equal to degree of denominator.

We divide numerator by denominator.

\[\therefore \frac{t^2 + 3t + 2}{t^2 + 7t + 12} = 1 - \left( \frac{4t + 10}{t^2 + 7t + 12} \right)\]
\[ \Rightarrow \frac{t^2 + 3t + 2}{t^2 + 7t + 12} = 1 - \frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} ............. \left( 1 \right)\]
\[\text{Let }\frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{A}{t + 3} + \frac{B}{t + 4}\]
\[ \Rightarrow \frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{A\left( t + 4 \right) + B\left( t + 3 \right)}{\left( t + 3 \right) \left( t + 4 \right)}\]
\[ \Rightarrow 4t + 10 = A\left( t + 4 \right) + B\left( t + 3 \right)\]
\[\text{Putting t + 4 = 0}\]
\[ \Rightarrow t = - 4\]
\[ \therefore - 16 + 10 = B\left( - 1 \right)\]
\[ \Rightarrow B = 6\]
\[\text{Putting t + 3 = 0}\]
\[ \Rightarrow t = - 3\]
\[ \therefore - 12 + 10 = A\left( - 3 + 4 \right)\]
\[ \Rightarrow A = - 2\]
\[ \therefore \frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{- 2}{t + 3} + \frac{6}{t + 4} ................ \left( 2 \right)\]
From (1) and (2)
\[\frac{t^2 + 3t + 2}{t^2 + 7t + 12} = 1 + \frac{2}{t + 3} - \frac{6}{t + 4}\]
\[ \therefore \int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)dx}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \int dx + 2\int\frac{dx}{x^2 + \left( \sqrt{3} \right)^2} - 6\int\frac{dx}{x^2 + 2^2}\]
\[ = x + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - \frac{6}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C\]
\[ = x + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - 3 \tan^{- 1} \left( \frac{x}{2} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 63 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x \cos x\ dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×